Sup and Inf

Problem

Let $S \subseteq \mathbb{R}$ be a nonempty bounded set. If $x \in \mathbb{R}$ is such that $x \leq y$ for all $y \in S$, show that $x \leq \inf S$.

Problem

Let $S \subseteq \mathbb{R}$ be a nonempty bounded set. If $P \subseteq S$ is nonempty, show that it is also bounded, and

 $\sup P \le \sup S,$ $\inf P \ge \inf S.$

Problem

Let $S \subseteq \mathbb{R}$ be a nonempty bounded set. Show that $\alpha = \sup S$ iff

 $(\forall \epsilon > 0) (\exists x \in S) [\alpha - \epsilon < x \le \alpha].$

Formulate and prove a similar statement about $\inf S$.

Problem Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are bounded functions. Show that f + g and fg are both bounded, and

$$\sup(f+g) \le \sup(f) + \sup(g),$$

$$\inf(f+g) \ge \inf(f) + \inf(g).$$

Furthermore, prove that if f and g are nonnegative,

 $\sup(fg) \le \sup(f) \cdot \sup(g),$ $\inf(fg) \ge \inf(f) \cdot \inf(g).$

Give an example of f, g such that $\sup(fg) < \sup(f) \cdot \sup(g)$.

Problem

Suppose $f : \mathbb{R} \to \mathbb{R}$ is bounded. Show that

 $\sup(-f) = -\inf(f)$

Problem

Suppose A, B are bounded subsets of \mathbb{R} . Define

$$A + B = \{a + b : a \in A, b \in B\},\$$
$$AB = \{ab : a \in A, b \in B\}.$$

Show that A + B and AB are bounded, and

$$\sup(A+B) = \sup(A) + \sup(B),$$
$$\sup(AB) = \sup(A) \cdot \sup(B).$$

Explain the difference between this and the product of two functions and why one needs to be an inequality and the other one doesn't.

Limits

Problem

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a bounded nondecreasing function. Show that

$$\lim_{x \to \infty} f(x) = \sup(f),$$
$$\lim_{x \to \infty} f(x) = \inf(f).$$

Can we say something similar when f is bounded and nonincreasing?

Problem

Let $f: \mathbb{R} \to \mathbb{R}$ be bounded and $a \in \mathbb{R}$ be given. Define $g, h: (0, \infty) \to \mathbb{R}$ such that

$$g(x) = \inf\{f(y) : 0 < |y - a| < x\},\$$

$$h(x) = \sup\{f(y) : 0 < |y - a| < x\}.$$

- 1. Prove that g is nonincreasing and h is nondecreasing.
- 2. Prove that $\sup(g) \leq \inf(h)$.
- 3. Prove that $\sup(g) = \inf(h)$ if and only if $\lim_{x \to a} f(x)$ exists, and

$$\lim f(x) = \sup(g) = \inf(h)$$

Remark: $\inf(h)$ and $\sup(g)$ are called the limit superior and limit inferior of f as it approaches a, respectively. Standard notation for each is $\limsup_{x \to a} f(x)$ and $\liminf_{x \to a} f(x)$.

4. Suppose

$$G(x) = \inf\{f(y) : y \ge x\},\$$

$$H(x) = \sup\{f(y) : y \ge x\}.$$

Prove that G is nonincreasing and H is nondecreasing, that $\sup(G) \leq \inf(H)$, and that equality holds iff $\lim_{x\to\infty} f(x)$ exists and is equal to both quantities.

Remark: $\inf(H)$ and $\sup(G)$ are called the limit superior and limit inferior of f, respectively. Standard notation for each is $\limsup_{x\to\infty} f(x)$ and $\liminf_{x\to\infty} f(x)$.

Problem

Let $f : \mathbb{R} \to \mathbb{R}$ and suppose $M \in \mathbb{R}$ is such that $f(x) \leq M$ for all $x \in \mathbb{R}$. Show that if $\lim_{x \to \infty} f(x)$ exists, then $\lim_{x \to \infty} f(x) \leq M$.

Problem

Suppose $f, g, h : \mathbb{R} \to \mathbb{R}$ are given such that $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$. Show that if

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} h(x),$$

then $\lim_{x \to \infty} g(x)$ exists and is equal to the limits of the other two functions.